Numerical Algorithm for Dynamic Problems Involving Fractional Operators.
نویسندگان
چکیده
منابع مشابه
On the Numerical Solution of One Dimensional Schrodinger Equation with Boundary Conditions Involving Fractional Differential Operators
In this paper we study of collocation method with Radial Basis Function to solve one dimensional time dependent Schrodinger equation in an unbounded domain. To this end, we introduce artificial boundaries and reduce the original problem to an initial boundary value problem in a bounded domain with transparent boundary conditions that involves half order fractional derivative in t. Then in three...
متن کاملOn certain fractional calculus operators involving generalized Mittag-Leffler function
The object of this paper is to establish certain generalized fractional integration and differentiation involving generalized Mittag-Leffler function defined by Salim and Faraj [25]. The considered generalized fractional calculus operators contain the Appell's function $F_3$ [2, p.224] as kernel and are introduced by Saigo and Maeda [23]. The Marichev-Saigo-Maeda fractional calculus operators a...
متن کاملVariational formulation of problems involving fractional order differential operators
In this work, we consider boundary value problems involving Caputo and Riemann-Liouville fractional derivatives of order α ∈ (1, 2) on the unit interval (0, 1). These fractional derivatives lead to non-symmetric boundary value problems, which are investigated from a variational point of view. The variational problem for the Riemann-Liouville case is coercive on the space H α/2 0 (0, 1) but the ...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولon certain fractional calculus operators involving generalized mittag-leffler function
the object of this paper is to establish certain generalized fractional integration and differentiation involving generalized mittag-leffler function defined by salim and faraj [25]. the considered generalized fractional calculus operators contain the appell's function $f_3$ [2, p.224] as kernel and are introduced by saigo and maeda [23]. the marichev-saigo-maeda fractional calculus operat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: JSME International Journal Series C
سال: 1998
ISSN: 1344-7653,1347-538X
DOI: 10.1299/jsmec.41.364